
GCOOS Members Meeting November 8, 2024

Lightning Talks

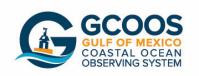
NATIONAL Sciences
Engineering
Medicine

GULF RESEARCH PROGRAM

Science Policy Fellow at GCOOS

Dr. Renata Kamakura

Urban Heat Waves

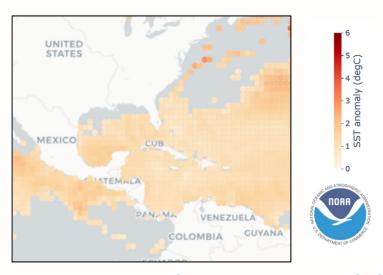

Nick Gagliano
Sofar Ocean

Jerad King
Erddap2agol tool

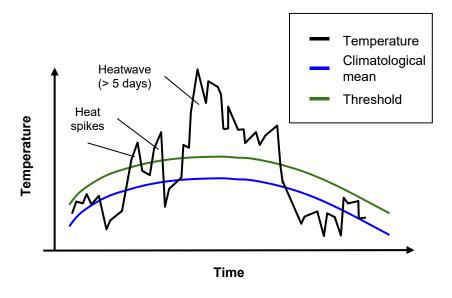
Dr. De'Marcus Robinson

Ocean Biogeochemistry

Marine Heatwaves Project


Renata Poulton Kamakura, Ph.D.

NAS Science Policy Fellow '24-25, GCOOS renata.kamakura@gcoos.org



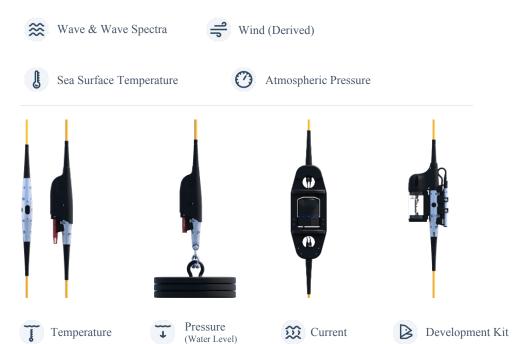
Marine heatwaves are periods of elevated ocean temperatures

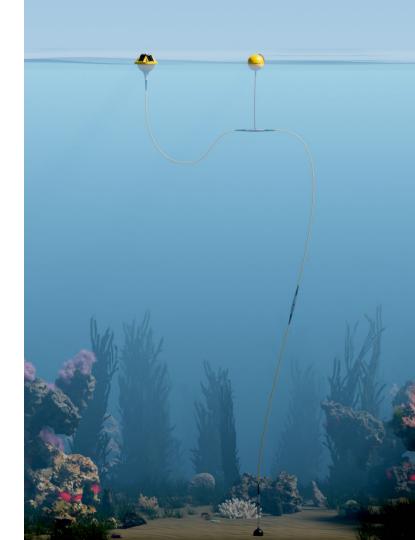
Unusually high sea-surface temperatures in the Gulf of Mexico in September 2024, from NOAA OISSTv2



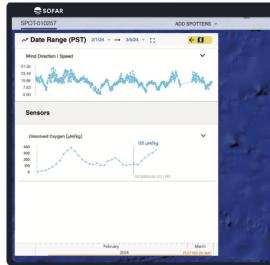
Adapted from marineheatwaves.org

Marine heatwaves impact marine resources, ecosystems, and coastal communities


GCOOS is collaborating with regional partners to:


- Develop framework to identify the impacts of MHWs on fisheries, coastal ecosystems, and coastal climates
- Use climate models to quantify the relationship between marine heatwave intensity and coastal urban climates (starting with Houston, TX)
- [over 2 years] Develop a system to detect Gulf of Mexico marine heatwaves in near real time based on in-situ sensors
- Collaborate with other regional associations (CARICOOS, SECOORA), researchers, and local groups to expand our understanding of MHW impacts in the southeastern U.S. and Caribbean

Spotter with Smart Mooring



Spotter Oxygen

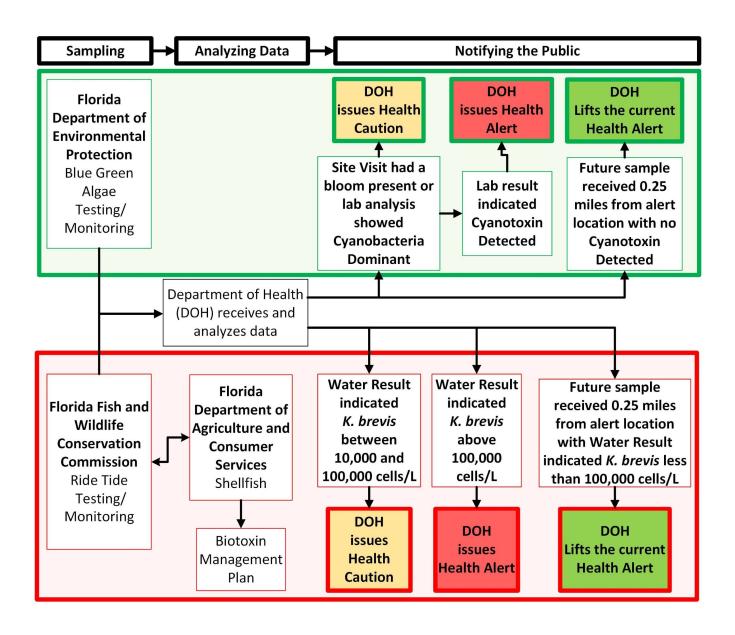
Ultra-low power consumption and anti-fouling wiper ensure continuous, long-term performance. Compact size enables integration of up to three payloads per Smart Mooring for water column profiling.

Payload	PME Dissolved	d Oxygen Sensor					
Dissolved Oxygen	Accuracy	±5%					
	Resolution	0.001 mg/L					
	Range	0-387 μM Concentration, 0 to 150% oxygen saturation					
Temperature	Accuracy	±0.1°C					
	Resolution	0.001° C					
	Range	0°C - 35°C					
Data Outputs	Measured:						
	Dissolved O2 concentration						
	Temperature						
	Computed:						
	Dissolved O2 concentration (salinity compensated, µmol/L)*						
	Dissolved O2 saturation (%)						
Operating Temperature	-5° to 30°C						
*Requires salinity measureme	nts to be provided						

Spotter Sound

Flexible configuration enables continuous characterization of the soundscape throughout the water column and temporal comparisons across multiple payloads and systems.

•	Applied Ocean Science Acoustic Recorder Sensor Technology SQ0017 Hydrophone				
Frequency	18 Hz - 25 kHz				
Sensitivity	-203 dB re 1V/µPa				
Self Noise	<31 dB re 1 µPa/√Hz				
Directional Respo	onse Omni-Directional				
Collection Modes	Continuous Duty Cycling Epoch/Trigger Arrays				
Data Outputs	Formats: Waveform Spectral Event Computed: Sound Pressure Level (SPL) Sound Exposure Level (SEL				
Operating Tempe	erature -5° to 30°C				



Florida Department of Health

Multi-Agency HAB Monitoring in Florida

November 8, 2024

Multi-Agency HAB Monitoring in Florida

Contact Information

Emily Cooley

Environmental Consultant
Aquatic Toxins
Bureau of Environmental Public Health
Florida Department of Health

Emily.Cooley@flhealth.gov

Phone: 850-245-4069

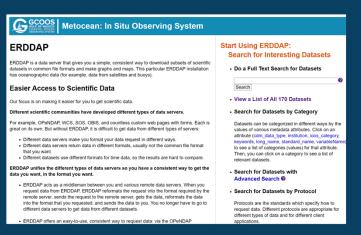
HealthHABInfo@flhealth.gov

ERDDAP2AGOL

A data pipeline for creating and managing ERDDAP data on ArcGIS Online

GCOOS Fall Meeting Lightning Talk

November 8th, 2024



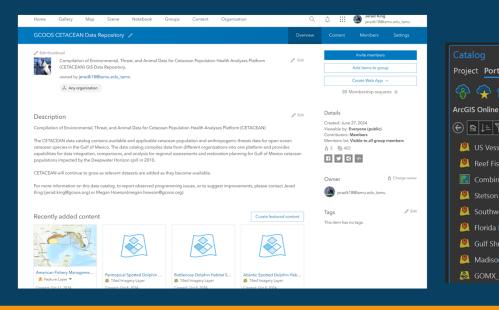
Jerad King GCOOS DMAC GIS Developer & Manager

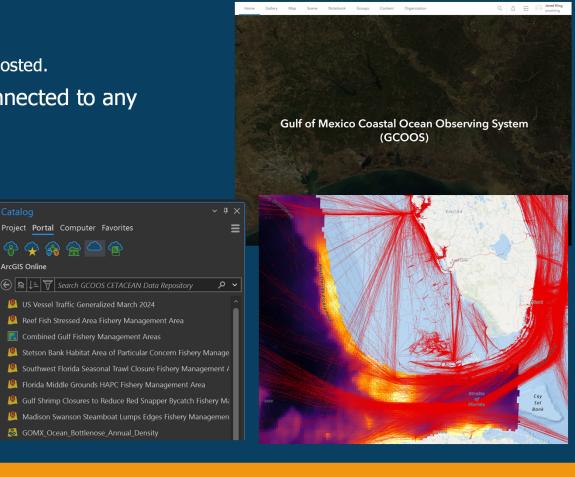
ERDDAP

- ERDDAP (Environmental Research Division Data Access Program).
 - Open source -> https://github.com/ERDDAP/erddap
- A data service that standardizes access to oceanographic and atmospheric datasets.
- Data requested on ERDDAP can be requested in a variety of common file types.
 - Data is reformatted from the source type to the requested type.

Grid DAP Data	Sub- set	Table DAP Data	Make A Graph	W M S	Source Data Files	Title	Sum- mary	FGDC, ISO, Metadata	Back- ground Info	RSS	E mail	Institution	Dataset ID
	set	data	graph			* The List of All Active Datasets in this ERDDAP *	0	M	background			GCOOS	allDatasets
	set	data	graph		files	Data for ioos-station-CBI-042	0	FIM	background 🗗	™ RSS	\bowtie	GCOOS	CBI_042
	set	data	graph		files	Data for ioos-station-CBI-069	0	FIM	background 🗗	RSS RSS	\bowtie	GCOOS	CBI_069
	set	data	graph		files	Data for ioos-station-CBI-072	0	FIM	background 🗗	RSS RSS	\bowtie	GCOOS	CBI_072
	set	data	graph		files	Data for ioos-station-CBI-074	0	FIM	background 🗗	RSS RSS	\bowtie	GCOOS	CBI_074
	set	data	graph		files	Data for ioos-station-CBI-076	0	FIM	background 🗗	RSS RSS	\bowtie	GCOOS	CBI_076
	set	data	graph		files	Data for ioos-station-CBI-127	0	FIM	background 🗗	RSS RSS	\bowtie	GCOOS	CBI_127
	set	data	graph		files	Data for ioos-station-CBI-130	0	FIM	background 🗗	RSS RSS	\bowtie	GCOOS	CBI_130
	set	data	graph		files	Data for ioos-station-CBI-138	0	FIM	background 🗗	RSS RSS	\bowtie	GCOOS	CBI_138
	set	data	graph		files	Data for ioos-station-CBI-170	0	FIM	background 🗗	™ RSS	\bowtie	GCOOS	CBI_170
	set	data	graph		files	Data for ioos-station-CBI-171	0	FIM	background 🗗	RSS RSS	\bowtie	GCOOS	CBI_171
	set	data	graph		files	Data for ioos-station-CBI-185	0	FIM	background 🗗	™ RSS	\bowtie	GCOOS	CBI_185
	set	data	graph		files	Data for ioos-station-CBI-236	0	FIM	background 🗗	RSS RSS	\bowtie	GCOOS	CBI_236
	set	data	graph		files	Data for ioos-station-CBI-242	0	FIM	background 🗗	RSS	\bowtie	GCOOS	CBI_242
	set	data	graph		files	Data for ioos-station-CBI-243	0	FIM	background 🗗	™ RSS	\bowtie	GCOOS	CBI_243
	set	data	graph		files	Data for ioos-station-CBI-244	0	FIM	background 🗗	™ RSS	\bowtie	GCOOS	CBI_244
	set	data	graph		files	Data for ioos-station-CBI-256	0	FIM	background 🗗	RSS	\bowtie	GCOOS	CBI_256
	set	data	graph		files	Data for ioos-station-CBI-275	0	FIM	background 🗗	™ RSS	\bowtie	GCOOS	CBI_275
	set	data	graph		files	Data for ioos-station-CBI-276	0	FIM	background 🗗	RSS RSS	\bowtie	GCOOS	CBI_276
	set	data	graph		files	Data for ioos-station-CBI-277	0	FIM	background 🗗	™ RSS	\bowtie	GCOOS	CBI_277
	set	data	graph		files	Data for ioos-station-CBI-278	0	FIM	background 🗗	RSS RSS	\bowtie	GCOOS	CBI_278
	set	data	graph		files	Data for ioos-station-CBI-279	0	FIM	background 🗗	RSS RSS	\bowtie	GCOOS	CBI_279
	set	data	graph		files	Data for ioos-station-COAPS-N7	0	FIM	background d	№ RSS	\bowtie	gcoos	COAPS N7

ArcGIS Online

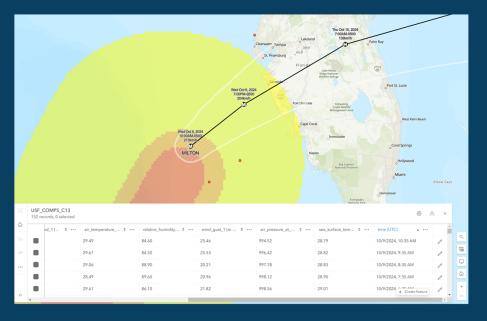

- Where GCOOS serves GIS data.
 - Where the CETACEAN Hub and its data are hosted.
- Data on ArcGIS Online can easily be connected to any application within the Esri ecosystem

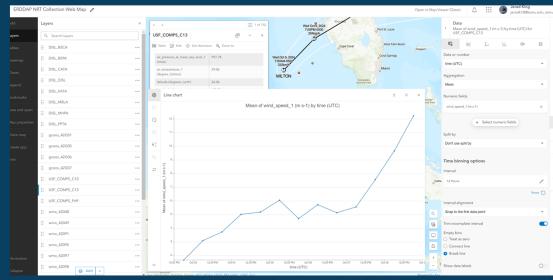

Project Portal Computer Favorites

US Vessel Traffic Generalized March 2024

Combined Gulf Fishery Management Areas

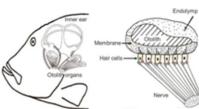
S GOMX_Ocean_Bottlenose_Annual_Density





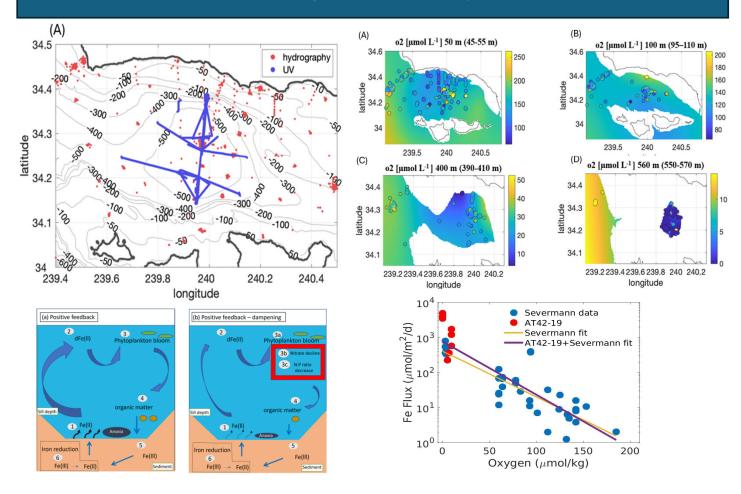
ERDDAP on ArcGIS Online

- By leveraging the same metadata information that ERDDAP uses to serve data in a variety of formats, the erddap2agol Python package creates Hosted Feature Layers from ERDDAP Data.
 - Just specify datasetid and desired ERDDAP service.


De'Marcus Robinson, Ph.D.

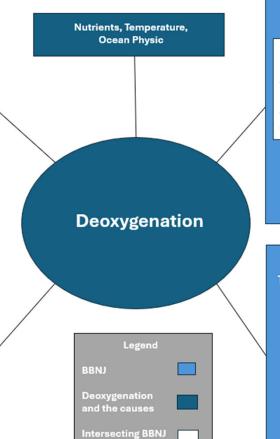
NOAA CCME Postdoctoral Research Associate

Research interest: Ocean Biogeochemistry, Geomicrobiology, geochemistry, Carbonate geochemistry, ocean policy



Ocean Deoxygenation and the impact on ocean biogeochemistry

Marine Genetic Resource How would deoxygenation effect marine genetic resource? · Marine biodiversity changes · Dominated by organism that can tolerate low oxygen · Habitat compression **Environmental Impact Assessment**


How might oxygen

conditions change?

Oxic

Hypoxic

Anoxic

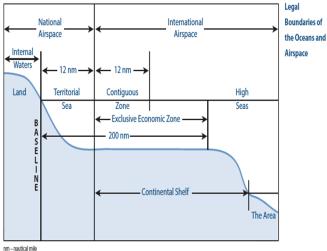
and Deoxygenation

Areas Based Management

What deoxygenation effect?

- Changes Marine biodiversity
- Fisheries management
- Subsistence Fishing


Area of Concern


- Marine Protected Area
- · Marine Sanctuaries
- National Heritage Sites

Compacity Building and Transfer of Marine Technology

What are the technology needs? Examples

- Argo Float BGC
- · Optode Sensors
- · Wrinkle Titration
 - AUV/ROV
- · Long-term time series

CLOSING THE GAP: LSU RECEIVES \$5M FUNDING TO BUILD HIGH FREQUENCY RADAR SYSTEMS ON THE COAST

Principal Investigators:

Dr. Kehui Xu, Louisiana State University

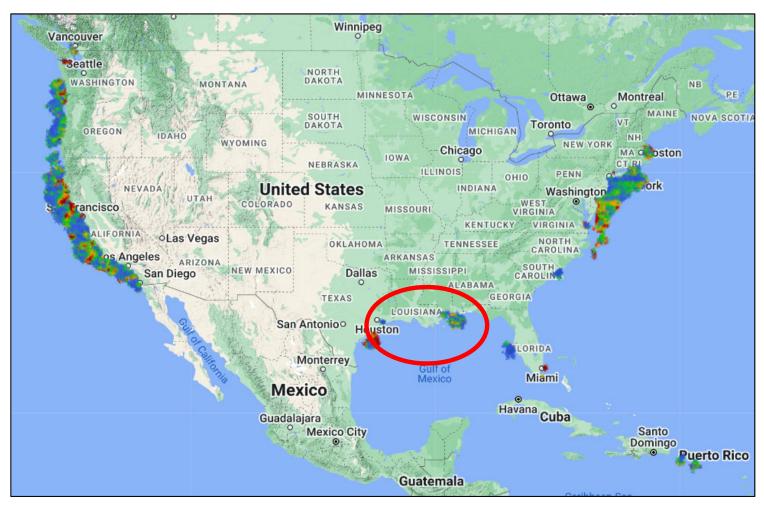
Dr. Chunyan Li, Louisiana State University

Dr. Samuel J. Bentley, Louisiana State University

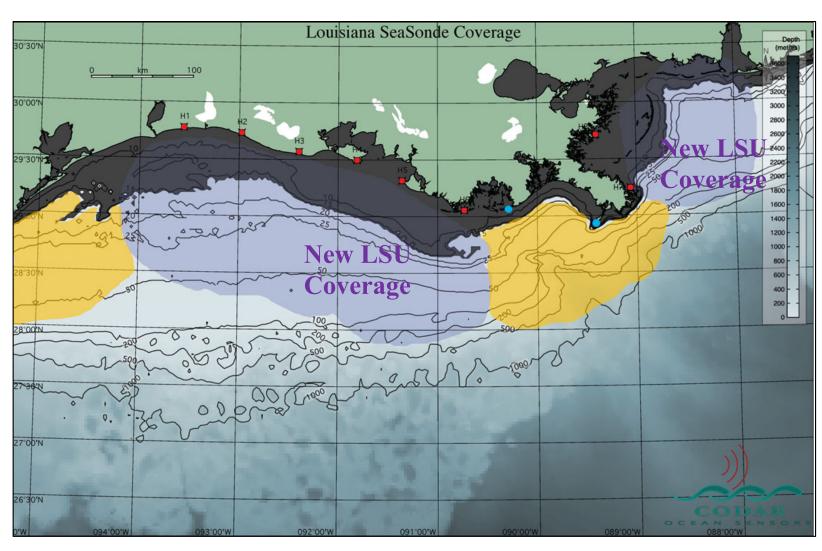
Dr. Paul Miller, Louisiana State University

Dr. Z. George Xue, Louisiana State University

Dr. Steven F. DiMarco, Texas A&M University, College Station


Dr. Jorge Brenner, Gulf of Mexico Coastal Ocean Observing System, Texas A&M University, College Station

A CODAR HF radar antenna similar to the ones that will be used on the Louisiana coastline.


Photo credit: Laura Pederson, CODAR

LARGE RADAR GAP IN LOUISIANA COAST

Map of the US showing current coverage of HFRs as of 5/10/2023

POTENTIAL NEW LSU RADAR COVERAGE

From CODAR and Dr. Chunyan Li

 Table 1. Timeline of proposed work

Tasks	Year 1	Year 2	Year 3	Year 4	Year 5
Acquisition of equipment	X	X			
Number of operating radars			2	4	8
Training of HFRs	X	X			
Site visit, finalization of sites, and fine-tuning bandwidth; Visits between/among TAMU, LSU, Fugro and USM	X	X	X	Х	
Fabrication of enclosure for electronics	X	X	X	X	
Installation of HFRs and antennas	X	X	X	X	X
Test runs	X	X	X	X	
Research training, user workshop for use of HFR data	X	X	X	X	X
Research training, use of HFR for oceanography, coastal meteorology, and data analysis class	X	X	X	X	X
Research training, use of HFR for student projects, outreach activities	X	X	X	X	X
Seeking external funding for continued operation			X	X	X
Data management	X	X	X	X	X
Radar Operator Meeting and Radio wave working group meetings	X	X	X	X	X
Workshop and conference meetings	X	X	X	X	X
Project reports	X	X	X	X	X